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Abstract

In this paper, we investigated the periodic solutions of type superharmonic and subsuperharmonic
of modified Duffing equation subjected to a bi-harmonic parametric and external excitations.
The method of multiple scales is used to construct a first order uniform expansion of approximate
solutions. Two first-order nonlinear ordinary differential equations(Modulation Equation) are
derived from the evolution of the amplitude and the phase. Steady state solutions and their
stability are given for selected values of the system parameters. The consequences of these
(quadratic and cubic) nonlinearities on these the vibrations are particularly examined. With this
research, it has been confirmed that the qualitative effects of these nonlinearities are different.
Regions of the hard (soft) nonlinearity of the system exist for the case of subsuperharmonic
oscillation. Numerical solutions are presented in a group of figures which demonstrate the actions
of the steady-state reaction plenitude as the purpose of the detuning parameter.
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1 Introduction

In the past few years, many more of the statistical methods were used to resolve a wide variety of
statistical, physical and technological innovation problems straight line and nonlinear.

In the present study, we use the method of multiple scales(MMS) for determination of the response
of nonlinearly oscillator to external excitation. For an extensive review, we relate your reader to
[17 27 37 4]’

Zavodney et al. [5] studied the response of a model includes quadratic and cubic geometric
nonlinearities. They found that stable limit cycles could exist. Zavodney and Nayfeh [6] investigated
the dynamics of a cantilever beam carrying a lumped mass. They modeled the structure with cubic
geometric and inertia nonlinearities. A thorough analysis of the governing equation of the motion
has provided an accurate model of the dynamic response of such devices [7, 8, 9], which has been
compared well with experimental results. The method of multiple scales is applied throughout.
Asfar[10] took material nonlinearity into consideration in the analysis of the performance of an
elastomeric damper with a spring Harding cubic effects near primary resonance condition applying
multiple scale method. Kamel and Amer [11] studied the behavior of one-degree-of-freedom system
with different quadratic damping and cubic stiffness nonlinearities simulating the axial vibration
of a cantilever beam under multi-parametric excitation forces.The method of multiple scales has
been used to solve the equations to first order perturbation. Eissa and Amer [12] studied the
vibrations of a second purchase program to the first method of a cantilever ray exposed to both
exterior and parametric excitation at main and subharmonic solutions. Nayfeh [13] compared
use of the way of several machines with reconstitution and the general way of calculating for
identifying higher-order estimates of three single-degree-of-freedom systems and a two-degree-of-
freedom system. He showed that the second-order frequency-response equation possesses spurious
solutions for the case of softening nonlinearity. El-Bassiouny [14] investigated the effects of quadratic
and cubic nonlinearities in elastomeric content dampers on torsional vibrations management. The
multiple time scales is used to solve the stability equations at primary resonance. The multiple-
scale perturbation technique is applied throughout. A limit value of straight line damping has been
acquired, where the program vibrations can be decreased considerably. Masana and Daqgaq [15]
have carried out detailed studies of the post-buckled piezoelectric beam. However, the advantage
of the bistable device over the linear device was not uniform, with the exception at very low
frequencies when the bistable harvester was excited into high-energy orbits but the linear harvester
was weakly excited. Superharmonic dynamics were specifically considered in a series of comparable
tests and simulations [16]. Sebald et al. [17]described a similar technique whereby an impulsive
voltage could be applied to the harvesting circuit to achieve the same objective theoretically. This
reduces the computational cost since the electrostatic force term in the discretized equation will not
require complicated numerical integration (integrating a numerator term over a denominator term
numerically is computationally expensive) [18].

The issue of parametric resonance occurs in many divisions of science and technological innovation.
One of the essential issues is that of powerful uncertainty. There are cases in which the influence of
a small vibration loading can stabilize a system which is statically unstable and vice-versa. There
are many books devoted to the analysis and applications of the problem of parametric excitation
[19]. As an example McLachlan [20] discussed the theory and applications of the Mathieu functions.
The interfacial stability with periodic forces is a relatively new topic in the theory of hydrodynamic
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stability. The statistical research is more challenging because: (a) the method of normal modes
is not applicable and (b) the linearized differential equations have time-dependent coefficients so
that, the exponential time dependence of the perturbation is not separable. Elhefnawy and El-
Bassiouny [21] studied the nonlinear stability and chaos in Electrohydrodynamics. El-Bassiouny [22]
investigated the principal parametric resonance of a single-degree-of-freedom system with nonlinear
two-frequency parametric and self-excitations. Qualitative research and asymptotic development
techniques are employed to estimate the use of steady-state reactions. The impact of damping,
magnitudes of nonlinear excitation and self-excitation are examined. El-Bassiouny and Eissa [23]
aanalyzed the behavior of two-degrees-of-freedom vibrating mechanical structure, which is described
by two nonlinear differential equations with quadratic and cubic nonlinearities, subjected to multi-
frequency parametric excitations in the presence of two-to-one internal resonance. Two estimated
methods (the multiple scales and the generalized synchronization) are used to obtain a uniform first-
order expansion. The results achieved by the two methods are in excellent agreement. Elnaggar et
al. [24] studied harmonic and subharmonic resonance of micro-electro-mechanical system (MEMS)
subjected to a weakly nonlinear parametric and external excitation. Elnaggar et al. [25] used the
method of multiple scales to investigated the saddle-node bifurcation control for an odd nonlinearity
problem. Elnaggar et al. [26] analyzed the perturbation analysis of an electrostatic micro-electro-
mechanical system(MEMS) subjected to external and nonlinear parametric excitations. Harmonic,
subharmonic and superharmonic resonance of a weakly nonlinear dynamical program exposed to
exterior excitation and parametric excitation or both are examined by Elnaggar et al.[27] and [28].

In this paper, an analysis of superharmonic oscillation of order two and subsuperharmonic oscillation
of order three-to-two are illustrated. Two first-order nonlinear ordinary differential equations are
derived for the evolution of the amplitude and phase with damping, nonlinearity, and all possible
solutions based on mathematically justified multiple scales method. Stability analysis is carried out
for each case.

2 Perturbation Analysis

The mathematical model of the micro-electro-mechanical systems (MEMS) is represented by the
following weakly nonlinear second order differential equation

U 4 2epn’ + wiu + e(aru® + aou®) — ea(2u + 3u® + 4u®) — €(2u + 3u® + 4u®) 2.1)

(F1 cos[Qt] + F» cos[2Qt]) — e(a + Fi cos[Qt] + F» cos[2€2]) = 0. .
Equation (2.1) represent Duffing formula exposed to weakly nonlinear parametric excitation, where
the dots indicate differentiation with respect to t, p is the coefficient of viscous damping,, € is a
small parameter ¢ < 1, w, is the linear natural frequency, 2 is frequency of the external excitation,
a is the coefficient of linear term. a; and ap are the coefficients of the nonlinear terms. F; and
F> are the coefficients of linear and nonlinear parametric excitations. To determine a first-order
uniform expansion of the solutions of Eq.(2.1). Let

u(t; €) = uo(To, T1) + eur (To, Ty) + O(*), T, = €', (2.2)
where T, = t is the first scale associated with changes occurring at the frequencies w, and 2,
and 77 = et is a slow scale associated with modulations in the amplitude. Denote D, = % and

D, = %. Substituting Egs.(2.2) into Eq.(2.1) and equating the coefficients of like power of €, one

has the following equations to order O(1) and to order O(e) :

Diuy 4w, = 0. (2.3)
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D2y + wup = — 2uDouo — 2Do Dyu + Fy cos[QUT,] + F» cos[2QT,] — asud
~+ 2uo (F1 cos[QTo] + Fa cos[2QT,]) + 3aug + 20ue +

) ) 5 (2.4)
+ 3uj (F1 cos[QT,] + Fz cos[2QT,)) — aqu, + 4o,
+ 4u3 (Fy cos[QUTy] + F» cos[2QT5)).
The solution of Eq.(2.3) can be expression the form
uo(To, T1) = A(T1)e™*™ + c.c, (2.5)

where A is the amplitude of the response and is a function of 77 and c.c is the complex conjugate
of A, substitute Eq.(2.5)into Eq.(2.4), we get

Dgul + wgul = — (—2aA + 2ipw, A — 120A%A + 3A2a2/i + inoA')ei“’OT"
+ 6aAA —2A0n A + gﬂﬁzeim*%")n + gFQf_lzei(m*Qw“)T"

+ (FLA + 6AF, A% w0l o 4 (B A 4 6AF, A?)e (32 wo)To (2.6)
F o F. o

+ (71 +3AF A)e e 4 (72 + 3AF, A)e* e

4 2F1A3ei(52—3wo)To + 2F2A3ei(29—3wo)To 4 NST + c.c.

Where the prime stands for the derivative with respect to 737, overbar represents the complex
conjugate and NST stands for nonsecular terms. Any particular solution of equation(2.6) contains
secular terms, and it may contain small-divisor terms depending on the solution conditions, it can
be seen that solutions occur when 2Q = w, and 3 = 2w,. In what follows, we shall investigate
superharmonic oscillation of order two and subsuperharmonic oscillation of order three-to-two of
the system (2.6).

3 Superharmonic Solution (292 = w, )

In this case, we study subharmonic solution of order two-to-one, introduce the detuning parameters
o1 to covert the small divisor term into secular terms

2Q = w, + €01, (3.1)

and write
(Q—wo)To = woTo + €01 T = woTp + 0111 (3.2)

Inserting equations (3.2) into equation (2.6) and eliminating the terms that produce secular terms
in u; yields the solvability condition

! ) A A 1 1 io
20A — 2iw, A" — 2ipAw, +120A% A — 3A% 0 A + (3AA + 3 Fee T — . (3.3)
Expressing A in the polar form
1 )
A(Ty) = 5a(:/’l)eWTl). (3.4)
Into Eq.(3.3) and separating the real and imaginary parts of equation (3.3), one obtains
) 1,1 3a® ,
4= —ap+ w—o(§ + T)FQ sin . (3.5)
, a 3a 3aa, 3 1.1 3a®
= £ - — =+ E ‘
a) aa1+wDO¢+(2wO Swo)a +w0(2+ 1 )F2 cosip, (3.6)
where
Y=o01T1 —B. (3.7
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It is obvious that, Egs.(3.5) and (3.6) have a trivial solution which of corresponds to the trivial
steady state solution. Nontrivial steady state solution correspond to the nontrivial fixed points

,

(equilibrium points) of Egs.(3.5) and (3.6). That is, they satisfy ¢ = ¢ = 0, and are given by

23) 1+ gag)Fg siny = ap. (3.8)
1 3 5 _ o, 3o 3az, 3
(1+ 50 VF2cosyp = —(o1 + o a (Qwo S a”. (3.9)

2Wo
Equations (3.8) and (3.9)show that there are two possibilities: (trivial solution) at ¢ = 0 and
(nontrivial solution) at a # 0. Squaring and adding equations(3.8) and (3.9) we get the frequency-
response equation

—8a’aw, — 12a*aw, + 3a*asw, + 2\/4a2F22w§ + 12a* F2w?2 + 9aS F2w? — 16a* p2w}

2,2
8a’w?

(3.10)

o1 =
Then, the first-order uniform expansion of the solution (first approximation) of Eq.(2.1) is given by
u = acos(2Qt — 2¢) + O(e). (3.11)

Stability analysis for the trivial solutions is equivalent to neglect the nonlinear terms solutions of
equation (3.3) by neglecting the nonlinear terms we get

20A — 2iw, A" — 2ipAw, + %FQei”lTl =0. (3.12)

To determine the stability of the trivial steady state solution, it is convenient to rewrite A in the
form

A= (B(T1) + ib(T1))e2 (™) (3.13)

where B and b are real and imaginary parts and get
b+ub+T1B=0. (3.14)
B+puB—-T1b=0, (3.15)

where I't = o1 + -. Eqgs.(3.14)and(3.15) admit solution of the form (B,b) o (B, b)e% ™1 where
(B,b) are constant. The eigenvalues of the coefficient matrix of Egs.(3.14) and (3.15) are

0o = —p £ il. (3.16)
Then, the trivial solution is stable if the real parts of both eigenvalues are negative.

To determine the stability of the nontrivial steady state solutions given by Egs.(3.8) and (3.9).
Let

a:a0+a1(T1) & ’([121/}0+'Lp1(T1). (317)

Where a, and 1, correspond to nontrivial steady state solutions and a; and ¢ are perturbations
which are assumed to be small compared with a, and 1,. Inserting equation (3.17) into equations
(3.5) and (3.6) and linearizing the resulting equations, we obtain

ao(8a + 12620 — 3a2as + 801wo)

8(4)0

a’1 = pay — ( )’lﬁl (318)
(16 + 48a2o + 36ata — 18a2as — 9atan + 1601w, — 24a30'1w0)
8(2a0 + 3a3)wo

(16aopwo, — 24ag,uwo)

B 8(2a0 + 3a3)wo V-

b=

(3.19)
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Equations (3.18) and (3.19) admit solution of the form (a1,%1) o (di,d2)e’™ where (di,ds) are
constants. Provided that

1

2 2 2 2 2 2
e (c1a” + coaaz + c3as + c4qo1Wo + C501Q2Wo + Copt Wy + CroTwW,)).  (3.20)
%o

2u 1
0=——"=—
s g VI
Where

c1 = —256 — 1536a2 — 3456a* — 3456a° — 12964, c2 = 384a? + 1440a* + 1728a° + 64845,

cs = —108a* — 216a° — 81a®, ¢4y = —512 — 1536a® — 1152a", c5 = 384a” + 576a",

c6 = 576a*, ¢c; = —256 + 576a%, cs = 2 + 3a®.

The solution is stable if and only if the real part of each of the eigenvalues of the coefficient of the
matrix are less than or equal to zero.

4 Subsuperharmonic Solution (30 = 2w,)

In this section, we study subsuperharmonic solution of order three-to-one. To express the nearness
of 32 to 2w,, one introduces the detuning parameter o defined according to

3Q = 2w, + €a, (4.1)

and writes
(32 — 2wo)To = 2woTo + €0Ty, = 2w Ty + oTh. (4.2)

Eliminating the secular terms form equation(3.2) yields
20A — 2w, A" — 2ipAw, + 120A%A — 3A% a0 A + gFQAQeiTN =0. (4.3)

Using Eq.(3.4) into Eq.(4.3)and separating real and imaginary parts, we obtain the following
modulation equations

4= —ap+ 830 a’ Fysiny. (4.4)
1, 1 3adas aa  3dla 3 o
Zay = a0 — 42 Fs cos 45
397 T 3977 T8, Wo + 2w, + 8w & RO (4.5)

where v = o7 — 38. Substituting zero for ¢ and % into Egs. (4.4)and(4.5) gives the following
equations for the steady state solutions

820 a’Fysiny = ap. (4.6)

3a3a2  aa  3diw

1
a’Fy cosy = —-ao + (4.7)

8wo 3 Swo Wo 2wo

Eliminating the phase angle v from equations (4.6) and (4.7) gives the expression for the solutions
curves for the solution a # 0 as follows

3 3
(- g0 + ooz _ ot Motz y gy (2

27212 _
3 8wo Wo 2w, a0 F2)" =0, (48)

o

i.e.

3(—8aw, — 12aZaw, + 3aZaow, + 1/9a2F3w? — 64u2wh)
”e . (4.9)
8w?2
Now, the stability analysis of the trivial solutions is determined as in the preceding section 3, so
that we get the eigenvalues equation is similar to equation (3.16).
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Following a procedure similar to that in section 3, one obtains the following eigenvalues that
determine the stability of the

\/576042 — 1296a4a2+648a4a0¢2 7810,404%+384ao'wn+768,u2w2+640'2wg

w2 (4.10)
8v/3 '

Consequently, a solution is stable if and only if the real parts of both eigenvalues (4.10) are less
than or equal to zero.

0=—p=+

5 Numerical Results

In this section the numerical solution of the frequency response equations (3.10) and (4.9) are
studied. Frequency response equations (3.10) and (4.9) are nonlinear algebraic equations in the
amplitude (a). The results are plotted in Figs. (1-15), which present the variation of amplitude (a)
against the detuning parameter o1 and o.

Figs. (1-8) represent the frequency response curves for superharmonic solution of order 2 for the
parameters [wo = 2,u = 3,F» = 3,0 = 1,2 = 2]. In Fig. (1) for positive value of o, we note
that the response amplitude has a stable single-valued curve and the maximum value exist at the
point o1 = —0.48. For negative value of a, we observe that the maximum value shifts to the right
so that the maximum value exist at the point o1 = 0.57, Fig. (2). When « takes the values 5 and
9, we note that the maximum shift to the left respectively so that the maximum values exist at
the points o1 = —2.79 and o1 = —5.06, Fig. (3). For decreasing « with negative values (i.e. «
take the value -5 and -9), we observe that the maximum shift to the right respectively so that the
maximum values exist at the points o1 = 2.79 and o1 = 5.06, Fig. (4). When as = 13, we note that
the singled-valued curves are intersect at the the same maximum value, Fig. (5). For increasing
and decreasing the coefficient of nonlinear external excitation F5 respectively, we observe that the
singled-valued curves shift upward and downward respectively and have increasing and decreasing
maximum values, Fig. (6,7,8).

Figs. (9-15) represent the frequency response curves for subsuperharmonic solution of order % for
the parameters [w, = 0.3, = 0.2, F> = 3, = 0.01,2 = 2]. In Fig. (9) for positive values, we
observe that the response amplitude has multivalued curve which consists of two branches while
the lower branch has unstable solutions and the upper branch has stable solutions and there exist
a saddle nodes bifurcations at the points 0 = —4.28 and ¢ = —4.34. When a9 takes the values
2 and 5, we observe that the multivalued curve contracted so that the upper and lower branches
are shifts to downward so that these branches have decreased magnitudes respectively. The saddle
nodes bifurcations exist at the points 0 = —4.30 and o = —1.69, Fig. (10). For decreasing a2 with
negative values (i.e. o takes the values -2 and -5), we note that the multivalued curve is contracted
so that the upper and lower branches have decreased magnitudes respectively and the saddle nodes
bifurcations exist at the points o = 4.01 and o = 1.46, Fig. (11). As the parameter « is decreased
with positive values (i.e. « takes the values 0.1 and 0.01), we get the same variation as in Fig. (10) so
that the saddle nodes bifurcations exist at the points 0 = —6.23 and 0 = —4.33, Fig. (12). When
the coefficient of nonlinear external excitation F» is decreased, we observe that the multivalued
curve is contracted so that the upper and lower branches are shifts to downward and upward so
that the upper branch has decreased magnitudes and the lower branch has increased magnitudes.
As I = 0.3 we observe that the multivalued curve is contracted and given semi-oval and the saddle
nodes bifurcations exist at the points ¢ = 2.01 and o = 2.11, Fig. (13). For increasing the damping
factor p, we note that the multivalued curve is contracted and the saddle nodes bifurcations exist at
the points o = —3.79 and o = 3.89, Fig. (14). When the natural frequency w, takes the values 0.9
and 2, we observe that the multivalued curve is contracted respectively so that the upper branch
has stable and unstable solutions while the lower branch has stable and unstable solutions and these
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branches are intersect at the point ¢ = —4.31. The saddle nodes bifurcations exist at the points
o = —1.40 and o = —0.49, Fig. (15).
05 T T T T 0.4
041 ff 0 q sl
| cone> 7 coffe.<0
© @© o2t
0.2/ ]
0.1
o1}
0.0 . L . . - 0.0 L
-4 -2 0 2 4 -6 -4 -2 0 2 4 6
01 o1
Fig. 1 Fig. 2

Figs. 1 and 2. The frequency response curves of the superharmonic solution of order 2 for the
parameters w, = 2, 4 = 3, Fh = 3,0 = £1, a0 = £2.

0.00 . . . - 0.00

5 0 5 -6 “a 2 0 2 4 6
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Fig. 3 Fig. 4

Figs. 3 and 4. Variation of the amplitude of the response with the detuning parameter for
increasing and decreasing «.
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Fig. 5 Fig. 6
Fig. 5. Variation of the amplitude of the Fig. 6. Variation of the amplitude of the
response with the detuning parameter for response with the detuning parameter for
increasing and decreasing ao. increasing and decreasing F5.
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Fig. 7. Variation of the amplitude of the Fig. 8. Variation of the amplitude of the
response with the detuning parameter for ~ response with the detuning parameter for

increasing and decreasing w,. increasing and decreasing p.
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Fig. 9. The frequency response curves of the subsuperharmonic solution of order % for the
parameters wo, = .3, 4 = 0.2, Fh =3,a = .01, =2 .

Figs. 10 and 11. Variation of the amplitude of the response with the detuning parameter for
increasing and decreasing «a.
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Fig. 12 Variation of the amplitude of the Fig. 13. Variation of the amplitude of the
response with the detuning parameter response with the detuning parameter
for increasing and decreasing a. for increasing and decreasing Fb.
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Fig. 14. Variation of the amplitude of the Fig. 15. Variation of the amplitude of the
response with the detuning parameter response with the detuning parameter
for increasing and decreasing . for increasing and decreasing w.

6 Summary and Conclusion

An analytical and numerical technique is used to predict the qualitative change taking place in the
stable solutions of the non-linear modified Duffing equation subjected to a bi-harmonic parametric
and external excitations. The multiple time scales are used to investigate a first-order approximate
analytical solution. The modulation equations (reduced equations) of the amplitude and phase
are obtained. Steady state solutions and their stability condition are determined. The following
conclusions can be deduced from the analysis:

From the frequency-response curves of superharmonic oscillation of order two(2), we note that the
response amplitude has a single-valued curve and all solutions are stable. The maximum value
shifts to the left and right for increasing and decreasing with decreasing a with negative values
respectively. The maximum value shifts upward for increasing F5,w, and for decreasing p. The
maximum value shifts downward for decreasing F> and for increasing w, and pu.

From the frequency-response curves of subsuperharmonic oscillation of order %, we observe that

the response amplitude has multivalued curve. The stable and unstable solutions are exist in the
upper and lower branches respectively. For positive (negative) values, we note that the multivalued

10
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curve bents to the right (left) and hard (soft) nonlinearities. When F> = 0.3 and p = 4 we observe
that the multivalued curve contracted and given semi-ovals. The upper branch of the multivalued
curves are intersect at the same point ¢ = —4.31, when w, takes the values 0.3, 0.9 and 2.
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